16 research outputs found

    Assessment of All-Ceramic Dental Restorations Behavior by Development of Simulation-Based Experimental Methods

    Get PDF
    New dental materials are often introduced into the market and especially in the current practice, without a basic understanding of their clinical performance because long‐term controlled clinical trials are required, which are both time consuming and expensive. Ceramic materials are known for their relatively high fracture resistance and improved aesthetics, but brittleness remains a concern. The stressed areas of the materials are key factors for the failure analysis, and numerical simulations may play an important role in the understanding of the behavior of all‐ceramic restorations. Simulation‐based medicine and the development of complex computer models of biological structures are becoming ubiquitous for advancing biomedical engineering and clinical research. The studies have to be focused on the analysis of all‐ceramic restorations failures, investigating several parameters involved in the tooth structure–restoration complex, in order to improve clinical performances. The experiments have to be conducted and interpreted reported to the brittle behavior of ceramic systems. Varied simulation methods are promising to assess the biomechanical behavior of all‐ceramic systems, and first principal stress criterion is an alternative for ceramic materials investigations. The development of well‐designed experiments could be useful to help to predict the clinical behavior of these new all‐ceramic restorative techniques and materials

    Surface Quality Evaluation of Removable Thermoplastic Dental Appliances Related to Staining Beverages and Cleaning Agents

    No full text
    (1) Background: Thermoplastic materials are not inert and subject to changes in the oral environment, which affect their surface quality. Color stability and topographic characteristics of clear thermoplastic appliances are critical considerations. The study aimed to evaluate the optical changes and surface topography of different thermoplastic materials related to staining beverages and cleaning agents. (2) Methods: Thermoplastic polyethylene terephthalate glycol (PET-G) material specimens were selected for the study: S (Duran, Scheu-Dental GmbH, Iserlohn, Germany), D (Biolon, Dreve Dentamid GmbH, Unna, Germany), and B (Crystal, Bio Art Dental Equipment, Sao Carlos, Brazil). Four different media were involved for immersion: coffee (C) and black tea (T) at 55 °C, Coca-Cola (K) at 5 °C, and distilled water (W) at 22 °C. As for cleaning, chemical options and mechanical brushing were selected (P-powder, T-tablets, and X-brushing). Color changes, and mean surface roughness were measured at 24 h, 48 h, and after 7 days. Statistical analysis was performed. After the testing period, atomic force microscopy (AFM) analyses and SEM images were registered in order to characterize the surface topography. (3) Results: Quantitative color change evaluations revealed a slight change in color after 24 h and an extremely marked change after 48 h, respective 7 days. Mean roughness values are kept below the clinically acceptable limit of 0.20 µm for all samples. Related to mean nanoroughness values Sa, and 3D evaluations of the surface quality, Biolon samples have demonstrated the most constant behavior, while Crystal samples are visibly influenced by water immersion. Related to the cleaning method, the topography of Duran samples was influenced by mechanical brushing. (4) Conclusions: Nanoscale investigations provided high accuracy and more realistic surface quality examinations of the examined samples compared to profilometry. Both SEM and AFM should be used for a more detailed description of the surface topography

    Masking Abilities of Dental Cad/Cam Resin Composite Materials Related to Substrate and Luting Material

    No full text
    An outstanding treatment challenge related to aesthetic monolithic materials is to mask discolored substrates in aesthetic areas. The purpose of the study is to evaluate the substrate masking ability of different resin composite materials and the influence of their association with luting agents and substrates. Five types of 2M2 HT (high translucency) resin composite materials were selected: Vita Enamic [E] and four types of nanoparticle-filled composites Lava Ultimate [L], Cerasmart [C], Shofu HC [S], and Hyramic [H]. Resin composite Vita VM LC with different shades was used for the substrates: 2M2, 3M2, and CP2. Variolink Esthetic Try-inpastes neutral, light+, and warm+ colors were chosen to simulate the luting agent color. Optical parameters (TP (translucency), CR (contrast ratio), and OP (opalesce)) and color differences ΔE (chromatic difference) were calculated. Statistical analyses were performed to evaluate the comparisons between the groups and establish correlations. TP average values for all materials were in the range of 21.49–24.53. OP average values were in the rage of 6.31–7.85. OP is moderate positive correlated to TP and CR is negative and strong correlated to TP. Related to materials, average color changes decrease as following: E > H > C > L > S. Referring to the tryin material, warm colors induce marked color changes of the restoration. The differences of the color changes determined by all studied substrates are significant. For the final aesthetic aspect of the restoration, it is essential to consider the underlying dental structure, luting agent, and restoration material as a whole unit. The masking ability of the investigated resin matrix ceramic materials materials shows differences, the best behavior demonstrated Shofu HC and Lava Ultimate. Marked color changes are related to high chroma substrates. For substrates with a darker color, the association with warm try-in pastes lead to marked color changes, but with neutral and light try-in pastes at most perceivable

    Experimental Analyses for The Mechanical Behavior of Pressed All-Ceramic Molar Crowns with Anatomical Design

    No full text
    Ceramic restorations show considerable variation in strength and structural reliability regarding to the type of material, and design characteristics. The fracture of ceramics occurs with little or no plastic deformation, with cracks propagated in an unstable manner under applied tensile stresses. The aim of the study was to assess experimental analyses of pressed monolithic ceramic crowns with anatomical design used in the posterior areas in order to understand their mechanical behavior before following their clinical use. Experiments were conducted on a complete molar crown preparation. Experiments show different modes of fracture for the tested samples. Digital images from the fractured pieces of the crowns were used to verify the fragments in all cases final fracture occurred by splitting into two and often more parts. The graphically representation of the displacement depending on the load highlights a series of peaks that can be correlated with cracks occurred in crowns. The development of well-designed mechanical experiments could be useful to help to predict clinical survival of these new all-ceramic restorative techniques and materials. Because failure is often accompanied by complete cracking of the crowns, preliminary research should represents a compulsory goal

    Experimental Analyses for The Mechanical Behavior of Pressed All-Ceramic Molar Crowns with Anatomical Design

    No full text
    Ceramic restorations show considerable variation in strength and structural reliability regarding to the type of material, and design characteristics. The fracture of ceramics occurs with little or no plastic deformation, with cracks propagated in an unstable manner under applied tensile stresses. The aim of the study was to assess experimental analyses of pressed monolithic ceramic crowns with anatomical design used in the posterior areas in order to understand their mechanical behavior before following their clinical use. Experiments were conducted on a complete molar crown preparation. Experiments show different modes of fracture for the tested samples. Digital images from the fractured pieces of the crowns were used to verify the fragments in all cases final fracture occurred by splitting into two and often more parts. The graphically representation of the displacement depending on the load highlights a series of peaks that can be correlated with cracks occurred in crowns. The development of well-designed mechanical experiments could be useful to help to predict clinical survival of these new all-ceramic restorative techniques and materials. Because failure is often accompanied by complete cracking of the crowns, preliminary research should represents a compulsory goal

    Surface Characterisation of Dental Resin Composites Related to Conditioning and Finishing

    No full text
    Due to the little information related to surface processing and conditioning of resin matrix ceramic materials previous glazing, the main purpose of this in vitro study was to investigate the effect of different surface treatments on the surface morphology of different resin composite materials. Five types of resin composite CAD-CAM materials: a resin composite ceramic Vita Enamic (E) and four types of nanoparticle-filled resins, like Lava Ultimate (L), Cerasmart (C), Shofu HC (S), Hyramic (H) were taken into consideration. Specimens received the following surface treatment protocols: conventional polishing [p], polishing and glazing [pg], conditioning with CoJet [c], conditioning with CoJet and glazing [cg], sandblasting [s], sandblasting and glazing [sg], etching [e], etching and glazing [eg]. Surface roughness was analyzed for all samples and nanosurface topographic characterization was made by Atomic Force Microscopy. The highest roughness was registered for sandblasted surfaces [s], followed by tribochemical silica airborne particle abrasion [c], and etching [e]. A very strong correlated conditioning behavior of resin nanoceramic materials, like L, C and S samples was found. The microroughness decreased thus [s] > [c] > [e]. These are moderate correlated with H, and are moderate negative correlated to E, where e is more efficient. Three-dimensional images indicated visible grain boundaries after conditioning, for all materials. After polishing and glazing, surfaces became smoother. For all tested conditioning and finishing methods, surface roughness values were within clinically acceptable limits. Finishing by polishing was proved to be a good choice for all materials taken into consideration, polishing and glazing likewise, excepting Hyramic. For Enamic and Shofu HC sandblasting or tribochemical conditioning and glazing and for Hyramic polishing and glazing are not the best options, related to nanoroughness values. Referring to the nanosurface topography, for Enamic, Cerasmart and Hyramic, glazing would be the method of choice, associated with the adequate conditioning method for each material

    Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics

    No full text
    Dental ceramic restorations are widely spread nowadays due to their aesthetics and biocompatibility. In time, the colour and structure of these ceramic materials can be altered by aging processes. How does artificial aging affect the optical and surface roughness of ceramics? This study aims to assess the effect of thermocycling, surface treatments and microstructure upon translucency, opalescence and surface roughness on CAD-CAM and heat-pressed glass-ceramic. Forty-eight samples (1.5 mm thickness) were fabricated from six types of A2 MT ceramic: heat-pressed and milled glass-ceramic (feldspathic, lithium disilicate and zirconia reinforced lithium silicate). The samples were obtained respecting the manufacturer’s instructions. The resulted surfaces (n = 96) were half glazed and half polished. The samples were subjected to thermocycling (10,000 cycles) and roughness values (Ra and Rz), colour coordinates (L*, a*, b*) and microstructural analyses were assessed before and after thermocycling. Translucency (TP) and opalescence (OP) were calculated. Values were statistically analysed using ANOVA test (one way). TP and OP values were significantly different between heat-pressed and milled ceramics before and also after thermocycling (p < 0.001). Surface treatments (glazing and polishing) had a significant effect on TP and OP and surface roughness (p < 0.05). The heat-pressed and milled zirconia reinforced lithium silicate glass-ceramic experienced a loss in TP and OP. Ra and Rz increased for the glazed samples, TP and OP decreased for all the samples after thermocycling. Microstructural analyse revealed that glazed surfaces were more affected by the thermocycling and especially for the zirconia reinforced lithium silicate ceramic. Optical properties and surface roughness of the chosen ceramic materials were affected by thermocycling, surface treatments and microstructural differences. The least affected of the ceramics was the lithium disilicate ceramic heat-pressed polished and glazed

    Micro-CT Marginal and Internal Fit Evaluation of CAD/CAM High-Performance Polymer Onlay Restorations

    No full text
    (1) Background: The use of high-performance polymers for fixed restorations requires additional studies regarding their adaptability and processing with CAD/CAM technology. This in vitro study aims to assess the marginal and internal fit of PEEK and PEKK materials using microcomputed tomography. (2) Methods: Twenty-four (n = 8) MOD onlays made of PEKK (Pekkton ivory), unmodified PEEK (Juvora medical), and modified PEEK (BioHPP) were investigated. A typodont mandibular left first molar was scanned to achieve 24 resin, 3D printed abutment teeth. The onlays were fabricated with a five-axis milling machine, and after cementation of the specimens, the marginal (MG) and internal gaps (IG) were evaluated at twelve points in the mesio-distal section and thirteen points in the bucco-lingual section using microcomputed tomography. For statistical data analysis, Wilcoxon signed-rank/paired Student t-Test, Mann–Whitney/unpaired Student t-Test, and one-way ANOVA test were applied. (3) Results: Significant differences (p < 0.05; α = 0.05) were reported between the MG and IG for each material for all three polymers and also among two materials in terms of the MG and IG (except Juvora-BioHPP). The highest IG values were recorded in angular areas (axio-gingival line angle) in the mesio-distal section for all the polymers. (4) Conclusions: For all the materials, MG < IG. The type of polymer influenced the adaptability; the lowest marginal and internal gap mean values were recorded for BioHPP. The analyzed polymer used for onlays are clinically acceptable in terms of adaptability

    Adaptability Evaluation of Metal-Ceramic Crowns Obtained by Additive and Subtractive Technologies

    No full text
    (1) Background: Traditional metal-ceramic restorations are considered as a standard in the evaluation of new technologies. A critical factor in their longevity is represented by their adaptability; The purpose of this study was to evaluate the marginal and internal gap of ceramic-fused to metal crowns with frameworks obtained by additive manufacturing (AM) technologies and the influence of veneering process on their fit; (2) Methods: Metal-ceramic crowns have been produced by conventional lost-wax technology (T), digital milling (F), selective laser sintering (SLS) and selective laser melting (SLM). The adaptability was assessed using silicone replicas before and after ceramic veneering; (3) Results: The best values were obtained for the milled group followed closely by SLM and SLS, and a significantly higher gap for casted copings. The veneering process did not significantly influence the adaptability of the crowns, regardless of the manufacturing process used for frameworks. The present study promotes additive technologies (AT) as a fast, efficient, and cost-effective alternative to traditional technology. There are fewer steps in which errors can occur when digital technologies are used and the risk of distortion is diminished. (4) Conclusions: CAD/CAM technologies, both additive and subtractive, represent an excellent option to produce time-effective, precise metal-ceramic crowns with excellent adaptation
    corecore